Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;101(4):383-92.
doi: 10.1007/s004010000296.

Expression of brain-derived neurotrophic factor and tyrosine kinase B receptor proteins in glioneuronal tumors from patients with intractable epilepsy: colocalization with N-methyl-D-aspartic acid receptor

Affiliations

Expression of brain-derived neurotrophic factor and tyrosine kinase B receptor proteins in glioneuronal tumors from patients with intractable epilepsy: colocalization with N-methyl-D-aspartic acid receptor

E Aronica et al. Acta Neuropathol. 2001 Apr.

Abstract

Recent evidence suggests that brain-derived neurotrophic factor (BDNF) and its tyrosine kinase B (TrkB) receptor, in addition to promoting neuronal survival and differentiation, modulates synaptic transmission by increasing N-methyl-D-aspartic acid receptor (NMDAR) activity. Overexpression of BDNF may, then, interfere with normal brain function, causing increased excitability. We have examined the immunohistochemical expression of BDNF, full-length TrkB receptor and the NMDAR subunit 1 and subunit 2A/B proteins (NMDAR1 and NMDAR2A/B) in glioneuronal tumors (gangliogliomas, GG, n = 40; dysembryoplastic neuroepithelial tumors, DNT, n = 15), from patients with chronic intractable epilepsy. The great majority of tumors studied were positive for all markers examined, supporting the high level of neurochemical differentiation of these lesions. BDNF and TrkB immunoreactivity (ir) was mainly observed in the neuronal component of the tumors. In GG, more than 90% of tumors contained very intense BDNF-ir ganglion cells. Double labeling confirmed the presence of BDNF-ir and TrkB-ir in neurons which contained NMDAR1. NMDAR2A/B intensely labeled abnormal neurons in both GG and DNT and co-localized with NMDAR1. The presence of BDNF and its receptor in the neuronal component of GG and DNT may suggest a role for this neurotrophin in the development of these lesions, preventing the death of abnormal neuronal cells. In addition, since these neurons contain both NMDAR1 and NMDAR2A/B subunits, the BDNF-TrkB pathway may also contribute through a modulation of glutamatergic transmission to the intrinsic epileptogenicity of glioneuronal tumors.

PubMed Disclaimer

Publication types

MeSH terms