Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2001 Jun;90(6):2109-16.
doi: 10.1152/jappl.2001.90.6.2109.

Similar effects of cooling and fatigue on eccentric and concentric force-velocity relationships in human muscle

Affiliations
Free article
Clinical Trial

Similar effects of cooling and fatigue on eccentric and concentric force-velocity relationships in human muscle

C J De Ruiter et al. J Appl Physiol (1985). 2001 Jun.
Free article

Abstract

The purpose of this study was to investigate the effects of muscle temperature and fatigue during stretch (eccentric) and shortening (concentric) contractions of the maximally electrically activated human adductor pollicis muscle. After immersion of the lower arm in water baths of four different temperatures, the calculated muscle temperatures were 36.8, 31.6, 26.6, and 22.3 degrees C. Normalized (isometric force = 100%) eccentric force increased with stretch velocity to maximal values of 136.4 +/- 1.6 and 162.1 +/- 2.0% at 36.8 and 22.3 degrees C, respectively. After repetitive ischemic concentric contractions, fatigue was less at the lower temperatures, and at all temperatures the loss of eccentric force was smaller than the loss of isometric and concentric force. Consequently, normalized eccentric forces increased during fatigue to 159.7 +/- 4.6 and 185.7 +/- 7.3% at 36.8 and 22.3 degrees C, respectively. Maximal normalized eccentric force increased exponentially (r2 = 0.95) when Vmax was reduced by cooling and/or fatiguing contractions. This may indicate that a reduction in cross-bridge cycling rate could underlie the significant increases in normalized eccentric force found with cooling and fatigue.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources