Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;297(3):968-74.

Phytoestrogens restore nitric oxide-mediated relaxation in isolated pulmonary arteries from chronically hypoxic rats

Affiliations
  • PMID: 11356918

Phytoestrogens restore nitric oxide-mediated relaxation in isolated pulmonary arteries from chronically hypoxic rats

M R Karamsetty et al. J Pharmacol Exp Ther. 2001 Jun.

Abstract

Phytoestrogens derived from soybeans reverse endothelial dysfunction in a number of animal models of systemic vascular disease. Based on these studies, we hypothesized that phytoestrogens would reverse chronic hypoxia-induced endothelial dysfunction in rat pulmonary arteries. To test this hypothesis we examined the effect of genistein, the major phytoestrogen found in soybeans, on carbachol-induced relaxation in phenylephrine-constricted pulmonary artery rings isolated from normoxic rats and rats exposed to 14 days of hypobaric hypoxia. Compared with that in normoxic rats, the response to carbachol was impaired in pulmonary arteries isolated from rats exposed to chronic hypoxia. In normoxic rat pulmonary arteries, genistein (30 microM) did not change the maximum relaxation to carbachol. In contrast, genistein significantly enhanced the relaxation response to carbachol in pulmonary arteries from hypoxic rats, restoring it to the levels seen in normoxic rats. 17beta-estradiol (10 microM) and daidzein (30 microM), a structural analog of genistein lacking inhibitory effects on tyrosine kinases, also restored the relaxation response to carbachol in hypoxic rat pulmonary arteries. The nitric-oxide synthase inhibitor N(omega)-nitro-L-arginine (100 microM) completely blocked the genistein, daidzein, and 17beta-estradiol-induced restoration of the relaxation response to carbachol, whereas the estrogen receptor antagonist ICI 182,780 (10 microM) had no effect on the relaxation responses. We conclude that the phytoestrogens genistein and daidzein act like estrogen in restoring nitric oxide-mediated relaxation in chronically hypoxic rat pulmonary arteries and that this effect does not appear to be mediated by inhibition of tyrosine kinases or by known estrogen receptors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources