Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;297(3):1044-50.

Identification of the human cytochromes p450 responsible for in vitro formation of R- and S-norfluoxetine

Affiliations
  • PMID: 11356927

Identification of the human cytochromes p450 responsible for in vitro formation of R- and S-norfluoxetine

B J Ring et al. J Pharmacol Exp Ther. 2001 Jun.

Abstract

The formation of R- and S-norfluoxetine was analyzed in vitro in human liver microsomes. Low apparent K(m) values for R-norfluoxetine formation of < or =8 microM and S-norfluoxetine of <0.2 microM were determined. R-Norfluoxetine formation rates in a characterized microsomal bank correlated with the catalytic activities for cytochrome P450 (CYP) 2D6, CYP2C9, and CYP2C8. Expressed CYP2C9, CYP2C19, and CYP2D6 formed R-norfluoxetine following incubation with 1 microM R-fluoxetine and exhibited apparent K(m) values of 9.7, 8.5, and 1.8 microM, respectively. Multivariate correlation analysis identified CYP2C9 and CYP2D6 as significant regressors with R-norfluoxetine formation. Antibodies to the CYP2C subfamily and CYP2D6 each exhibited moderate inhibition of R-norfluoxetine formation. Therefore, CYP2D6 and CYP2C9 contribute to this biotransformation. At pharmacological concentrations of S-fluoxetine, S-norfluoxetine formation rates in the bank of microsomes were found to correlate only with CYP2D6 catalytic activity and only expressed CYP2D6 was found to be capable of forming S-norfluoxetine. Thus, it would appear that both CYP2D6 and CYP2C9 contribute to the formation of R-norfluoxetine, whereas only CYP2D6 is responsible for the conversion to S-norfluoxetine. Since the enantiomers of fluoxetine and norfluoxetine are inhibitors of CYP2D6, upon chronic dosing, the CYP2D6-mediated metabolism of the fluoxetine enantiomers would likely be inhibited, resulting in R-norfluoxetine formation being mediated by CYP2C9 and S-norfluoxetine formation being mediated by multiple high K(m) enzymes.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms