Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;28(4):457-65.
doi: 10.1007/s002590000471.

PET reversed mismatch in an experimental model of subacute myocardial infarction

Affiliations

PET reversed mismatch in an experimental model of subacute myocardial infarction

L Mesotten et al. Eur J Nucl Med. 2001 Apr.

Abstract

The aim of this study was to evaluate the relationship between flow/metabolism, histology and functional follow-up in a sheep model of subacute myocardial infarction. In eight juvenile sheep, a myocardial infarction was induced by intracoronary injection of macrobeads. Left ventricular function was evaluated using echocardiography. 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG)/nitrogen-13-labelled ammonia (13NH3) positron emission tomography (PET) was performed at 6 weeks and 16 weeks after embolization. In five sheep, a dynamic carbon-11 acetate study was performed. In each animal, two regions of interest were defined on the polar map, corresponding to the embolized and the non-embolized region. After the final measurements, the hearts were processed for histological evaluation. PET revealed a moderately decreased flow and oxidative metabolism in the embolized region at 6 weeks, without significant changes at follow-up. At 6 weeks, 18F-FDG uptake in the embolized area was more severely decreased as compared to the flow index in the embolized area (P < 0.05). At 16 weeks, 18F-FDG metabolism had significantly recovered (P < 0.05). Serial echocardiography showed a persistent decrease in global and regional left ventricular function. Histology revealed a mix of micro-infarcted and viable tissue in the embolized region. In this model of subacute myocardial infarction, a PET "reversed mismatch" pattern was observed, with partial recovery of 18F-FDG uptake at follow-up. The histological counterpart of this PET pattern appears to be patchy necrosis.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources