Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May;83(5):437-44.
doi: 10.1016/s0300-9084(01)01258-5.

Inactivation of catalase and superoxide dismutase by singlet oxygen derived from photoactivated dye

Affiliations

Inactivation of catalase and superoxide dismutase by singlet oxygen derived from photoactivated dye

S Y Kim et al. Biochimie. 2001 May.

Abstract

Both superoxide dismutase (SOD) and catalase are key enzymes in the antioxidant system of the cells that work to maintain low steady-state concentrations of the reactive oxygen species. When exposed to a singlet oxygen-producing system composed of dye, such as methylene blue or rose bengal, and visible light both SOD and catalase were susceptible to oxidative modification and damage as indicated by the loss of activity, fragmentation and aggregation of peptide as well as by the formation of carbonyl groups. Histidine, a powerful quenching agent for singlet oxygen, and the polyamines, such as spermine and spermidine, were effective at protecting the activity loss mediated by illuminated dye, whereas spin traps were only mildly effective. The structural alterations of modified enzymes were indicated by the increase in susceptibility to proteases, the change in absorption spectra and in fluorescence spectra. The singlet oxygen-mediated damage to SOD and catalase may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources