Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;52(356):577-90.

Compartmentation of photosynthesis in cells and tissues of C(4) plants

Affiliations
  • PMID: 11373306

Compartmentation of photosynthesis in cells and tissues of C(4) plants

G E Edwards et al. J Exp Bot. 2001 Apr.

Abstract

Critical to defining photosynthesis in C(4) plants is understanding the intercellular and intracellular compartmentation of enzymes between mesophyll and bundle sheath cells in the leaf. This includes enzymes of the C(4) cycle (including three subtypes), the C(3) pathway and photorespiration. The current state of knowledge of this compartmentation is a consequence of the development and application of different techniques over the past three decades. Initial studies led to some alternative hypotheses on the mechanism of C(4) photosynthesis, and some controversy over the compartmentation of enzymes. The development of methods for separating mesophyll and bundle sheath cells provided convincing evidence on intercellular compartmentation of the key components of the C(4) pathway. Studies on the intracellular compartmentation of enzymes between organelles and the cytosol were facilitated by the isolation of mesophyll and bundle sheath protoplasts, which can be fractionated gently while maintaining organelle integrity. Now, the ability to determine localization of photosynthetic enzymes conclusively, through in situ immunolocalization by confocal light microscopy and transmission electron microscopy, is providing further insight into the mechanism of C(4) photosynthesis and its evolution. Currently, immunological, ultrastructural and cytochemical studies are revealing relationships between anatomical arrangements and photosynthetic mechanisms which are probably related to environmental factors associated with evolution of these plants. This includes interesting variations in the C(4) syndrome in leaves and cotyledons of species in the tribe Salsoleae of the family Chenopodiaceae, in relation to evolution and ecology. Thus, analysis of structure-function relationships using modern techniques is a very powerful approach to understanding evolution and regulation of the photosynthetic carbon reduction mechanisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources