Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 1;84(1):73-82.
doi: 10.1016/s0304-3894(01)00190-x.

Irreversible precipitation of mercury and lead

Affiliations

Irreversible precipitation of mercury and lead

M M Matlock et al. J Hazard Mater. .

Abstract

There are immediate concerns with current commercial reagents that are used for heavy metal precipitation; in particular the fact that the reagents are not specifically designed to bind the targeted metals. The current literature reveals that not only do commercial reagents lack sufficient ability to strongly bind the metals, but they also fail to provide long-term stability as ligand-metal complexes under a variety of moderate conditions. For this reason a new ligand was designed and synthesized: 1,3-benzenediamidoethanethiol (BDETH2). It offers multiple, concerted, bonding sites for heavy metals and forms a stable metal-ligand precipitate. In this study, the formation of compounds comprised of this ligand with the divalent metals, lead and mercury, was explored and the pH stability of the water insoluble precipitates was determined. The leaching properties of the metal-ligand precipitates were determined using inductively coupled plasma (ICP) spectroscopy and cold vapor atomic fluorescence spectroscopy (CVAF). The results indicate that a 50.00 ppm lead solution at a pH of 4.0 may be reduced to a concentration of 0.05 ppm (99.9% lead removal) and to 0.13 ppm (99.7% lead removal) at a pH 6.0. A 50.00 ppm mercury solution at pH 4.0 may be reduced to a concentration of 0.02 ppm (99.97% mercury removal) and to 0.02 ppm (99.97% mercury removal) at a pH of 6.0.

PubMed Disclaimer

LinkOut - more resources