Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 May:45 Suppl 3:S277-83; discussuin S295-6.
doi: 10.1016/s0039-6257(01)00207-7.

Maintaining mitochondrial membrane impermeability. an opportunity for new therapy in glaucoma?

Affiliations
Review

Maintaining mitochondrial membrane impermeability. an opportunity for new therapy in glaucoma?

W G Tatton et al. Surv Ophthalmol. 2001 May.

Abstract

Apoptosis may contribute to retinal ganglion cell loss in glaucoma and glaucoma models. Recent research has suggested that mitochondrially dependent apoptosis signaling may contribute to apoptosis in a rat model of glaucoma involving chronic increases in intraocular pressure. In some forms of apoptosis, mitochondrially dependent signaling involves increases in mitochondrial membrane permeability and the mitochondrial release of factors that signal for cell degradation. Opening of a multi-protein, mitochondrial megapore is one factor that contributes to the increased permeability and some anti-apoptotic proteins, particularly BCL-2 and BCL-X(L), bind at the megapore and facilitate megapore closure and reduce increases in mitochondrial membrane permeability. Phosphorylated protein kinase B (Akt) serves as an integrator for cellular survival signals and facilitates the megapore actions of BCL-2 and BCL-X(L), which could protect retinal ganglion cells against insults that induce apoptosis. Several anti-apoptotic agents are being evaluated for use in glaucoma, including brimonidine and propargylamines, which oppose mitochondrially dependent apoptosis through pathways involving phosphorylated Akt.

PubMed Disclaimer

MeSH terms

LinkOut - more resources