Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul;21(1-3):137-147.
doi: 10.1016/s0927-7765(01)00167-9.

Filler effects of oil droplets on the rheology of heat-set emulsion gels prepared with egg yolk and egg yolk fractions

Affiliations

Filler effects of oil droplets on the rheology of heat-set emulsion gels prepared with egg yolk and egg yolk fractions

M Anton et al. Colloids Surf B Biointerfaces. 2001 Jul.

Abstract

Hen egg yolk is a traditional ingredient used in a wide variety of food emulsions, especially fluid sauces. Industrial processing of these sauces generally involves heat treatments in order to pasteurise or sterilise them. These heat treatments may cause undesired gelation of the emulsion, because egg yolk proteins are particularly thermosensitive. Heat gelation of oil-in-water emulsions prepared with egg yolk may differ from that of egg yolk solutions, because of the influence of oil droplets on network formation. In this study, we investigated the influence of oil droplets on the gelation of oil-in-water emulsions made with yolk. We studied three pH values: 3.0, 5.0 and 7.0 with a constant NaCl concentration: 0.55 M. Oil droplet size was controlled after emulsification, gelation of solutions and emulsions was monitored in situ by coupling heating with recording viscoelastic properties, and transmission electron microscopy was conducted in heat-set emulsion gels. In an attempt to target the proteins that impose the kinetic of gelation of egg yolk, we repeated the experiment with plasma and granules, the main fractions of yolk. In situ rheology showed that, in our experimental conditions [especially oil volume fraction (0.3) and oil droplet size (d3.2=1 &mgr;m)], emulsions made with yolk and plasma have a similar gelation process with oil droplets acting as inactive fillers. Furthermore, transmission electron microscopy showed similar network characteristics between heated emulsions made with yolk and plasma. Moreover, we demonstrated that acidic conditions provided the fastest gelation of yolk solutions and emulsions. On the other hand, in emulsions prepared with granules, oil droplets behaved as active filler particles and reinforced the gel strength.

PubMed Disclaimer

LinkOut - more resources