Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001;19(1):136-45.
doi: 10.1016/s1093-3263(00)00124-8.

Continuum solvent molecular dynamics study of flexibility in interleukin-8

Affiliations

Continuum solvent molecular dynamics study of flexibility in interleukin-8

W Cornell et al. J Mol Graph Model. 2001.

Abstract

Generalized Born continuum solvent methods have been shown to provide a reasonable description of the equilibrium thermodynamics of aqueous solvation in a variety of applications to peptides, proteins, and nucleic acids. Here we study the performance of these methods in molecular dynamics simulations of interleukin-8, comparing nanosecond-length explicit solvent simulations with those using the generalized Born model. In general, the simulations show similar results, although movement away from the initial NMR-determined structure and average fluctuations about the mean are slightly higher for the continuum solvent results. In both simulations, the two helices that are packed on top of the core sheet move closer together, resulting in a structure that more closely resembles the X-ray structure. Principal-component (quasiharmonic) analysis is used to analyze the motions of these helices in both of the simulations and in the NMR ensemble of structures. Prospects for making more general use of continuum solvent models in protein dynamics simulations are discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources