Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001;43(6):143-50.

Time-resolved study of biofilm architecture and transport processes using experimental and simulation techniques: the role of EPS

Affiliations
  • PMID: 11381960

Time-resolved study of biofilm architecture and transport processes using experimental and simulation techniques: the role of EPS

M Kuehn et al. Water Sci Technol. 2001.

Abstract

Cellular material and extracellular polymeric substances are the basic structural elements in biofilm systems. The structure and role of EPS for biofilm development and metabolic processes have not been precisely determined and, therefore, have not yet been included as a necessary element in modelling and simulation studies. This is due to the difficulty of experimentally detecting the extracellular polymeric substances in situ and differentiating them from cellular material on the one hand, and to the subsequent uncertainty about appropriate models--e.g. rigid hindrances, porous microstructure or visco-elastic structure--on the other hand. In this work, we report on the use of confocal laser scanning microscopy to monitor the development of a monoculture biofilm of Sphingomonas sp. grown in a flow cell. The bacterial strain was genetically labelled resulting in strong constitutive expression of the green fluorescent protein. The development of extracellular polymeric substances was followed by binding of the lectin concavalin A to cell exopolysaccharides. The growth of the resulting strain was digitally recorded by automated confocal laser scanning microscopy. In addition, local velocity profiles of fluorescent carboxylate-modified microspheres were observed on pathlines throughout the biofilm. The CLSM image stacks were used as direct input for the explicit modelling and three-dimensional numerical simulation of flow fields and solute transport processes based on the conservation laws of continuum mechanics. At present, a strongly simplifying EPS-model is applied for numerical simulations. The EPSs are preliminarily assumed to behave like a rigid and dense hindrance with diffusive-reactive solute transport.

PubMed Disclaimer

Similar articles

Cited by

Publication types