Analysis of variance for gene expression microarray data
- PMID: 11382364
- DOI: 10.1089/10665270050514954
Analysis of variance for gene expression microarray data
Abstract
Spotted cDNA microarrays are emerging as a powerful and cost-effective tool for large-scale analysis of gene expression. Microarrays can be used to measure the relative quantities of specific mRNAs in two or more tissue samples for thousands of genes simultaneously. While the power of this technology has been recognized, many open questions remain about appropriate analysis of microarray data. One question is how to make valid estimates of the relative expression for genes that are not biased by ancillary sources of variation. Recognizing that there is inherent "noise" in microarray data, how does one estimate the error variation associated with an estimated change in expression, i.e., how does one construct the error bars? We demonstrate that ANOVA methods can be used to normalize microarray data and provide estimates of changes in gene expression that are corrected for potential confounding effects. This approach establishes a framework for the general analysis and interpretation of microarray data.
Similar articles
-
A 3800 gene microarray for cattle functional genomics: comparison of gene expression in spleen, placenta, and brain.Anim Biotechnol. 2002 May;13(1):163-72. doi: 10.1081/ABIO-120005779. Anim Biotechnol. 2002. PMID: 12212940
-
Statistical analysis of high-density oligonucleotide arrays: a multiplicative noise model.Bioinformatics. 2002 Dec;18(12):1633-40. doi: 10.1093/bioinformatics/18.12.1633. Bioinformatics. 2002. PMID: 12490448
-
Rosetta error model for gene expression analysis.Bioinformatics. 2006 May 1;22(9):1111-21. doi: 10.1093/bioinformatics/btl045. Epub 2006 Mar 7. Bioinformatics. 2006. PMID: 16522673
-
Microarrays: spotlight on gene function and pharmacogenomics.Curr Cancer Drug Targets. 2001 Aug;1(2):155-75. doi: 10.2174/1568009013334197. Curr Cancer Drug Targets. 2001. PMID: 12188888 Review.
-
[Microarrays: technologies overview and data analysis].Ukr Biokhim Zh (1999). 2004 Mar-Apr;76(2):5-19. Ukr Biokhim Zh (1999). 2004. PMID: 15915706 Review. Ukrainian.
Cited by
-
A computational framework for the analysis of peptide microarray antibody binding data with application to HIV vaccine profiling.J Immunol Methods. 2013 Sep 30;395(1-2):1-13. doi: 10.1016/j.jim.2013.06.001. Epub 2013 Jun 13. J Immunol Methods. 2013. PMID: 23770318 Free PMC article.
-
Expansion and diversification of the Glycine max (Gm) ERD15-like subfamily of the PAM2-like superfamily.Planta. 2024 Sep 27;260(5):108. doi: 10.1007/s00425-024-04538-4. Planta. 2024. PMID: 39333439
-
Identification of the role of C/EBP in neurite regeneration following microarray analysis of a L. stagnalis CNS injury model.BMC Neurosci. 2012 Jan 4;13:2. doi: 10.1186/1471-2202-13-2. BMC Neurosci. 2012. PMID: 22217148 Free PMC article.
-
Tunable regulation of CREB DNA binding activity couples genotoxic stress response and metabolism.Nucleic Acids Res. 2016 Nov 16;44(20):9667-9680. doi: 10.1093/nar/gkw643. Epub 2016 Jul 18. Nucleic Acids Res. 2016. PMID: 27431323 Free PMC article.
-
Analysis of host response to bacterial infection using error model based gene expression microarray experiments.Nucleic Acids Res. 2005 Mar 30;33(6):e53. doi: 10.1093/nar/gni050. Nucleic Acids Res. 2005. PMID: 15800204 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources