Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May 29;103(21):2617-23.
doi: 10.1161/01.cir.103.21.2617.

Mitochondria as targets for nitric oxide-induced protection during simulated ischemia and reoxygenation in isolated neonatal cardiomyocytes

Affiliations

Mitochondria as targets for nitric oxide-induced protection during simulated ischemia and reoxygenation in isolated neonatal cardiomyocytes

R D Rakhit et al. Circulation. .

Abstract

Background: As shown previously, exposure to NO donors initiates protective mechanisms in cardiomyocytes that persist after removal of the donor, a form of pharmacological preconditioning. Because NO also affects mitochondrial respiration, we studied the effect of NO on mitochondrial Ca(2+) uptake.

Methods and results: Neonatal rat ventricular myocytes in primary culture were exposed to 1 hour of simulated ischemia and 1 hour of reoxygenation (sI/R). Pretreatment with the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) (1 mmol/L for 90 minutes), followed by washing and incubation for 10 to 30 minutes, reduced sI/R-induced cell death to 25.4% compared with control (propidium iodide exclusion assay, P<0.001). Short (10-second) exposures to SNAP reversibly suppressed mitochondrial respiration without a detectable change in mitochondrial potential. In contrast, treatment with SNAP for 90 minutes caused a modest but sustained mitochondrial depolarization, as judged by JC-1 fluorescence. SNAP pretreatment limited cellular Ca(2+) overload during ischemia (fura-2 ratio rose to 226+/-40% versus 516+/-170% of baseline, n=5, P<0.05) and prevented loss of cell membrane integrity during reoxygenation. SNAP pretreatment also significantly reduced the ability of mitochondria to accumulate Ca(2+) in the face of a similar cytosolic Ca(2+) load (peak rhod-2 fluorescence 133+/-4% versus 166+/-7% of baseline at similar fluo-3 levels, P=0.0004, n=52 and 25, respectively).

Conclusions: Pretreatment with an NO donor induces a modest, sustained mitochondrial depolarization and protects cardiomyocytes from sI/R injury. The demonstrated reduction in mitochondrial Ca(2+) uptake possibly reduces cytosolic Ca(2+) overload, providing a likely mechanism for NO-induced protection.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources