Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998;1(1):1-10.

Coalescence of sleep rhythms and their chronology in corticothalamic networks

Affiliations
  • PMID: 11382851
Review

Coalescence of sleep rhythms and their chronology in corticothalamic networks

M Steriade et al. Sleep Res Online. 1998.

Abstract

The cellular substrates of sleep oscillations have recently been investigated by means of multi-site, intracellular and extracellular recordings under anesthesia, and these data have been validated during natural sleep in cats and humans. Although various rhythms occurring during the state of resting sleep (spindle, 7-14 Hz; delta, 1-4 Hz; and slow oscillation, <1 Hz) are conventionally described by using their different frequencies, they are coalesced within complex wave-sequences due to the synchronizing power of the cortically generated slow oscillation (main peak around 0.7 Hz). In intracellular recordings from anesthetized animals, the slow oscillation is characterized by a biphasic sequence consisting of a prolonged hyperpolarization and depolarization. Basically similar patterns are observed by means of extracellular discharges and/or field potentials in naturally sleeping animals and humans. The depolarizing component of the slow oscillation is transferred to the thalamus where it contributes to the synchronization of spindles over widespread territories. The association between the depolarizing component of the slow oscillation and the subsequent sequence of spindle waves forms what is termed the K-complex. The slow oscillation also groups cortically generated delta waves. At variance with previous assumptions that the brain lies for the most part in the dark and a global inhibition occurs in resting sleep, cortical cells are quite active in this behavioral state. This unexpectedly rich activity raises the possibility that, during sleep, the brain is occupied to specify/reorganize circuits and to consolidate memory traces acquired during wakefulness.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources