Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Apr;304(1):59-66.
doi: 10.1007/s004410100353.

Asymmetrical development of bones and soft tissues during eye migration of metamorphosing Japanese flounder, Paralichthys olivaceus

Affiliations

Asymmetrical development of bones and soft tissues during eye migration of metamorphosing Japanese flounder, Paralichthys olivaceus

N Okada et al. Cell Tissue Res. 2001 Apr.

Abstract

The symmetrical body of flatfish larvae dramatically changes into an asymmetrical form after metamorphosis. Eye migration results in the most significant asymmetrical development seen in any vertebrate. To understand the mechanisms involved in eye migration, bone and cartilage formation was observed during metamorphosis in laboratory-reared Japanese flounder, Paralichthys olivaceus, by using whole-body samples and histological sections. Most of the hard tissues of the cranium (parasphenoid, trabecular cartilage, supraorbital canal, and supraorbital bar) exist symmetrically in the larval period before metamorphosis and develop by twisting in the same direction as that in which the eye migrates. An increase in skin thickness beneath the eye was observed only on the blind side at the beginning of eye migration; this was the first definitive difference between the right and left sides of the body. The pseudomesial bar, a peculiar bone present only in flatfishes, developed from this thick skin and grew dorsad. Novel sac-like structures were found and named retrorbital vesicles. The retrorbital vesicle of the blind side grew larger and faster than that of the ocular side when the right eye moved most dramatically, whereas no difference was observed between the volume of right and left connective tissue in the head. The asymmetrical presence and growth of the pseudomesial bar together with inflation of the retrorbital vesicle on the blind side may be responsible for right eye migration during metamorphosis in the Japanese flounder.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources