Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 7;44(12):1951-62.
doi: 10.1021/jm001124p.

Structure-activity relationships of 1,4-dihydro-(1H,4H)-quinoxaline-2,3-diones as N-methyl-D-aspartate (glycine site) receptor antagonists. 1. Heterocyclic substituted 5-alkyl derivatives

Affiliations

Structure-activity relationships of 1,4-dihydro-(1H,4H)-quinoxaline-2,3-diones as N-methyl-D-aspartate (glycine site) receptor antagonists. 1. Heterocyclic substituted 5-alkyl derivatives

M J Fray et al. J Med Chem. .

Abstract

A series of 6,7-dichloro-1,4-dihydro-(1H, 4H)-quinoxaline-2,3-diones (1-17) were prepared in which the 5-position substituent was a heterocyclylmethyl or 1-(heterocyclyl)-1-propyl group. Structure-activity relationships were evaluated where binding affinity for the glycine site of the N-methyl-D-aspartate (NMDA) receptor was measured using the specific radioligand [3H]-L-689,560, and functional antagonism was demonstrated by inhibition of NMDA-induced depolarizations of rat cortical wedges. The ability to prevent NMDA-induced hyperlocomotion in mice in vivo was measured for selected compounds. Binding affinity increased significantly if the heterocyclic group, e.g. 1,2,3-triazol-1-yl could participate in accepting a hydrogen bond from the receptor. It was difficult to obtain compounds with adequate aqueous solubility and strategies to improve it were investigated. The most potent compound in this series, 6,7-dichloro-5-[1-(1,2,4-triazol-4-yl)propyl]-1,4-dihydro-(1H, 4H)-quinoxaline-2,3-dione (17) (binding IC50 = 2.6 nM; cortical wedge EC50 = 90 nM), inhibited NMDA-induced hyperlocomotion in mice (6/9 protected at 20 mg/kg iv). Pharmacokinetic parameters, including extent of brain penetration, for 11 and 17 are reported.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources