Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Jan-Mar;76(1-5):187-97.
doi: 10.1016/s0960-0760(01)00051-6.

Regulation of steroidogenic enzymes and a novel testicular RNA helicase

Affiliations
Review

Regulation of steroidogenic enzymes and a novel testicular RNA helicase

M L Dufau et al. J Steroid Biochem Mol Biol. 2001 Jan-Mar.

Abstract

Luteinizing hormone (LH) supports steroidogenesis and maintains testicular and ovarian function. Mediators of LH action exert homologous regulation of membrane receptors, steroidogenic enzymes and other regulatable genes of the Leydig cell (LC). Androgen and estrogen induced by LH could act through its cognate receptors in the LC to regulate gene expression. Although androgens are unquestionable essential for spermatogenesis and presumably exert their heterologous action through androgen receptors present in the Sertoli its regulatory mechanism in germinal cell maturation is far from clear. In contrast to physiological concentrations of gonadotropins which maintain the steroidogenic functions and LH and prolactin receptors in the gonads, high concentrations of gonadotropin (hCG) cause receptor down-regulation and desensitization of steroidogenic enzymes of the LCs in vivo (3beta-hydroxysteroid dehydrogenase types I and II, 17alpha-hydroxylase/17,20 lyase, and 17beta-hydroxysteroid dehydrogenase type III [17beta-HSD]). In addition, 17beta-HSD is regulated by compartmentalized endogenous glucose/ATP. The attenuation of steroidogenesis which results from receptor mediated activation by cognate hormone, but is independent of the subsequent phase of receptor down-regulation, is due to changes at the transcriptional level. Among the candidates affecting this regulation are active steroid metabolites (direct or indirect of steroids and other mediator(s) i.e. cAMP, putative transcription factors induced by LH action). Differential display assay revealed another gene which is transcriptionally regulated by gonadotropin termed GRTH (Gonadotropin Regulated Testicular Helicase). GRTH is a novel member of the DEAD-box family of RNA helicases, and is specifically expressed in LCs and meiotic LC of the testis. It is markedly up-regulated by hCG via cAMP-induced androgen formation in LCs at doses that cause down-regulation of receptors and steroidogenic enzymes. GRTH functions as a translational activator. Androgen produced by gonadotropin stimulation exerts intracrine/autocrine actions on GRTH, and also could influence transcription within the seminiferous tubule. GRTH may contribute to the control of steroidogenesis, including the restoration of down regulated cellular functions, and in the paracrine regulation of androgen dependent gene(s) involved in the meiotic process, and could thus have a crucial role in spermatogenesis.

PubMed Disclaimer

Similar articles

Cited by

  • Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.
    Strawbridge RJ, Dupuis J, Prokopenko I, Barker A, Ahlqvist E, Rybin D, Petrie JR, Travers ME, Bouatia-Naji N, Dimas AS, Nica A, Wheeler E, Chen H, Voight BF, Taneera J, Kanoni S, Peden JF, Turrini F, Gustafsson S, Zabena C, Almgren P, Barker DJ, Barnes D, Dennison EM, Eriksson JG, Eriksson P, Eury E, Folkersen L, Fox CS, Frayling TM, Goel A, Gu HF, Horikoshi M, Isomaa B, Jackson AU, Jameson KA, Kajantie E, Kerr-Conte J, Kuulasmaa T, Kuusisto J, Loos RJ, Luan J, Makrilakis K, Manning AK, Martínez-Larrad MT, Narisu N, Nastase Mannila M, Ohrvik J, Osmond C, Pascoe L, Payne F, Sayer AA, Sennblad B, Silveira A, Stancáková A, Stirrups K, Swift AJ, Syvänen AC, Tuomi T, van 't Hooft FM, Walker M, Weedon MN, Xie W, Zethelius B; DIAGRAM Consortium; GIANT Consortium; MuTHER Consortium; CARDIoGRAM Consortium; C4D Consortium; Ongen H, Mälarstig A, Hopewell JC, Saleheen D, Chambers J, Parish S, Danesh J, Kooner J, Ostenson CG, Lind L, Cooper CC, Serrano-Ríos M, Ferrannini E, Forsen TJ, Clarke R, Franzosi MG, Seedorf U, Watkins H, Froguel P, Johnson P, Deloukas P, Collins FS, Laakso M, Dermitzakis ET, Boehnke M, McCarthy MI, Wareham NJ, Groop L, Pattou F, Gloyn AL, Dedoussis GV, Lyssenko V, Meig… See abstract for full author list ➔ Strawbridge RJ, et al. Diabetes. 2011 Oct;60(10):2624-34. doi: 10.2337/db11-0415. Epub 2011 Aug 26. Diabetes. 2011. PMID: 21873549 Free PMC article.
  • A new analysis of testicular proteins through integrative bioinformatics.
    Fu-Jun L, Hai-Yan W, Jian-Yuan L. Fu-Jun L, et al. Mol Biol Rep. 2012 Apr;39(4):3965-70. doi: 10.1007/s11033-011-1176-5. Epub 2011 Jul 16. Mol Biol Rep. 2012. PMID: 21766181
  • The DEAD-box protein DP103 (Ddx20 or Gemin-3) represses orphan nuclear receptor activity via SUMO modification.
    Lee MB, Lebedeva LA, Suzawa M, Wadekar SA, Desclozeaux M, Ingraham HA. Lee MB, et al. Mol Cell Biol. 2005 Mar;25(5):1879-90. doi: 10.1128/MCB.25.5.1879-1890.2005. Mol Cell Biol. 2005. PMID: 15713642 Free PMC article.

LinkOut - more resources