Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Jun;49(6):812-9.
doi: 10.1203/00006450-200106000-00017.

Impaired early neurologic outcome in newborn piglets reoxygenated with 100% oxygen compared with room air after pneumothorax-induced asphyxia

Affiliations
Comparative Study

Impaired early neurologic outcome in newborn piglets reoxygenated with 100% oxygen compared with room air after pneumothorax-induced asphyxia

P Temesvári et al. Pediatr Res. 2001 Jun.

Abstract

Birth asphyxia is a serious problem worldwide, resulting in 1 million deaths and an equal number of neurologic sequelae annually. It is therefore important to develop new and better ways to treat asphyxia. In the present study we tested the effects of reoxygenation with room air or with 100% oxygen (O2) after experimental pneumothorax-induced asphyxia on the blood oxidative stress indicators, early neurologic outcome, and cerebral histopathology of newborn piglets. Twenty-six animals were studied in three experimental groups: 1) sham-operated animals (SHAM, n = 6), 2) animals reoxygenated with room air after pneumothorax (R21, n = 10), and 3) animals reoxygenated with 100% O2 after pneumothorax (R100, n = 10). In groups R21 and R100, asphyxia was induced under anesthesia with bilateral intrapleural room air insufflation. Gasping, bradyarrhythmia, arterial hypotension, hypoxemia, hypercarbia, and combined acidosis occurred 62 +/- 6 min (R21) or 65 +/- 7 min (R100; mean +/- SD) after the start of the experiments; then pneumothorax was relieved, and a 10-min reoxygenation period was started with mechanical ventilation with room air (R21) or with 100% O2 (R100). The newborn piglets then breathed room air spontaneously during the next 3 h. Blood oxidative stress indicators (oxidized and reduced glutathione, plasma Hb, and malondialdehyde concentrations) were measured at different stages of the experiments. Early neurologic outcome examinations (neurologic score of 20 indicates normal, 5 indicates brain-dead) were performed at the end of the study. The brains were next fixed, and various regions were stained for cerebral histopathology. In the SHAM group, the blood gas and acid-base status differed significantly from those measured in groups R21 and R100. In group R100, arterial PO2 was significantly higher after 5 (13.8 +/- 5.6 kPa) and 10 min (13.2 +/- 6.3 kPa) of reoxygenation than in group R21 (8.7 +/- 2.8 kPa and 9.2 +/- 3.1 kPa). The levels of all oxidative stress indicators remained unchanged in the study groups (SHAM, R21, and R100). The neurologic examination score in the SHAM group was 18 +/- 0, in group R21 it was 13.5 +/- 3.1, and in group R100 it was 9.5 +/- 4.1 (significant differences between SHAM and R21 or R100, and between R21 and R100). Cerebral histopathology revealed marked damage of similar severity in both asphyxiated groups. We conclude that the blood oxidative stress indicators and cerebral histopathology did not differ significantly after a 10-min period of reoxygenation with room air or with 100% O2 after pneumothorax-induced asphyxia, but reoxygenation with 100% O2 might impair the early neurologic outcome of newborn piglets.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources