Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 May 20;12(8):861-70.
doi: 10.1089/104303401750195836.

Nonviral vectors in the new millennium: delivery barriers in gene transfer

Affiliations
Review

Nonviral vectors in the new millennium: delivery barriers in gene transfer

M Nishikawa et al. Hum Gene Ther. .

Abstract

Development of an efficient method for introducing a therapeutic gene into target cells in vivo is the key issue in treating genetic and acquired diseases by gene therapy. To this end, various nonviral vectors have been designed and developed, and some of them are in clinical trials. The simplest approach is naked DNA injection into local tissues or systemic circulation. Physical (gene gun, electroporation) and chemical (cationic lipid or polymer) approaches have also been utilized to improve the efficiency and target cell specificity of gene transfer by plasmid DNA. After administration, however, nonviral vectors encounter many hurdles that result in diminished gene transfer in target cells. Cationic vectors sometimes attract serum proteins and blood cells when entering into blood circulation, which results in dynamic changes in their physicochemical properties. To reach target cells, nonviral vectors should pass through the capillaries, avoid recognition by mononuclear phagocytes, emerge from the blood vessels to the interstitium, and bind to the surface of the target cells. They then need to be internalized, escape from endosomes, and then find a way to the nucleus, avoiding cytoplasmic degradation. Successful clinical applications of nonviral vectors will rely on a better understanding of barriers in gene transfer and development of vectors that can overcome these barriers.

PubMed Disclaimer

Publication types

LinkOut - more resources