Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1
- PMID: 11387216
- PMCID: PMC125477
- DOI: 10.1093/emboj/20.11.2835
Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1
Abstract
Heme controls expression of genes involved in the synthesis of globins and heme. The mammalian transcription factor Bach1 functions as a repressor of the Maf recognition element (MARE) by forming antagonizing hetero-oligomers with the small Maf family proteins. We show here that heme binds specifically to Bach1 and regulates its DNA-binding activity. Deletion studies demonstrated that a heme-binding region of Bach1 is confined within its C-terminal region that possesses four dipeptide cysteine-proline (CP) motifs. Mutations in all of the CP motifs of Bach1 abolished its interaction with heme. The DNA-binding activity of Bach1 as a MafK hetero-oligomer was markedly inhibited by heme in gel mobility shift assays. The repressor activity of Bach1 was lost upon addition of hemin in transfected cells. These results suggest that increased levels of heme inactivate the repressor Bach1, resulting in induction of a host of genes with MARES:
Figures









Similar articles
-
Heme-dependent up-regulation of the alpha-globin gene expression by transcriptional repressor Bach1 in erythroid cells.Biochem Biophys Res Commun. 2004 Nov 5;324(1):77-85. doi: 10.1016/j.bbrc.2004.09.022. Biochem Biophys Res Commun. 2004. PMID: 15464985
-
Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1.EMBO J. 2004 Jul 7;23(13):2544-53. doi: 10.1038/sj.emboj.7600248. Epub 2004 Jun 3. EMBO J. 2004. PMID: 15175654 Free PMC article.
-
Heme positively regulates the expression of beta-globin at the locus control region via the transcriptional factor Bach1 in erythroid cells.J Biol Chem. 2004 Feb 13;279(7):5480-7. doi: 10.1074/jbc.M302733200. Epub 2003 Dec 1. J Biol Chem. 2004. PMID: 14660636
-
Bach1, a heme-dependent transcription factor, reveals presence of multiple heme binding sites with distinct coordination structure.IUBMB Life. 2007 Aug-Sep;59(8-9):542-51. doi: 10.1080/15216540701225941. IUBMB Life. 2007. PMID: 17701549 Review.
-
The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation.Antioxid Redox Signal. 2006 Jan-Feb;8(1-2):107-18. doi: 10.1089/ars.2006.8.107. Antioxid Redox Signal. 2006. PMID: 16487043 Review.
Cited by
-
Bach1 Represses Wnt/β-Catenin Signaling and Angiogenesis.Circ Res. 2015 Jul 31;117(4):364-375. doi: 10.1161/CIRCRESAHA.115.306829. Epub 2015 Jun 29. Circ Res. 2015. PMID: 26123998 Free PMC article.
-
Control of Oxidative Stress in Cancer Chemoresistance: Spotlight on Nrf2 Role.Antioxidants (Basel). 2021 Mar 25;10(4):510. doi: 10.3390/antiox10040510. Antioxidants (Basel). 2021. PMID: 33805928 Free PMC article. Review.
-
Deciphering the Role of Heme Oxygenase-1 (HO-1) Expressing Macrophages in Renal Ischemia-Reperfusion Injury.Biomedicines. 2021 Mar 16;9(3):306. doi: 10.3390/biomedicines9030306. Biomedicines. 2021. PMID: 33809696 Free PMC article. Review.
-
Harnessing the Therapeutic Potential of the Nrf2/Bach1 Signaling Pathway in Parkinson's Disease.Antioxidants (Basel). 2022 Sep 9;11(9):1780. doi: 10.3390/antiox11091780. Antioxidants (Basel). 2022. PMID: 36139853 Free PMC article. Review.
-
Activity of the calcium channel pore Cch1 is dependent on a modulatory region of the subunit Mid1 in Cryptococcus neoformans.Eukaryot Cell. 2013 Jan;12(1):142-50. doi: 10.1128/EC.00130-12. Epub 2012 Nov 21. Eukaryot Cell. 2013. PMID: 23175710 Free PMC article.
References
-
- Alam J., Stewart,D., Touchard,C., Boinapally,S., Choi,A.M. and Cook,J.L. (1999) Nrf2, a Cap’n’collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol. Chem., 274, 26071–26078. - PubMed
-
- Blouin J.L., Duriaux Sail,G., Guipponi,M., Rossier,C., Pappasavas,M.P. and Antonarakis,S.E. (1998) Isolation of the human BACH1 transcription regulator gene, which maps to chromosome 21q22.1. Hum. Genet., 102, 282–288. - PubMed
-
- Chen J.J., Pal,J.K., Petryshyn,R., Kuo,I., Yang,J.M., Throop,M.S., Gehrke,L. and London,I.M. (1991a) Amino acid microsequencing of internal tryptic peptides of heme-regulated eukaryotic initiation factor 2α subunit kinase: homology to protein kinases. Proc. Natl Acad. Sci. USA, 88, 315–319. - PMC - PubMed
-
- Chen J.J., Throop,M.S., Gehrke,L., Kuo,I., Pal,J.K., Brodsky,M. and London,I.M. (1991b) Cloning of the cDNA of the heme-regulated eukaryotic initiation factor 2α (eIF-2α) kinase of rabbit reticulocytes: homology to yeast GCN2 protein kinase and human double-stranded-RNA-dependent eIF-2α kinase. Proc. Natl Acad. Sci. USA, 88, 7729–7733. - PMC - PubMed
-
- Creusot F., Verdiere,J., Gaisne,M. and Slonimski,P.P. (1989) CYP1 (HAP1) regulator of oxygen-dependent gene expression in yeast. I. Overall organization of the protein sequence displays several novel structural domains. J. Mol. Biol., 204, 263–276. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous