Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Jun 3;14(11):2536-41.
doi: 10.1021/bi00682a037.

The conformation of glucagon: predictions and consequences

The conformation of glucagon: predictions and consequences

P Y Chou et al. Biochemistry. .

Abstract

It is proposed that glucagon, a polypeptide hormone, is delicately balanced between two major conformational states. Utilizing a new predictive model [Chou, P.Y., and Fasman, G.D. (1974), Biochemistry 13, 222] which considers all the conformational states in proteins (helix, beta sheet, random coil, and beta turns), the secondary structural regions of glucagon are computed herein. The conformational sensitivity of glucagon may be due to residues 19-27 which have both alpha-helical potential (mean value of Palpha = 1.19) as well as beta-sheet potential (mean value of Pbeta = 1.25). Two conformational states are predicted for glucagon. In predicted form (a), residues 5-10 form a beta-sheet region while residues 19-27 form an alpha-helical region (31% alpha, 21% beta) agreeing well with the circular dichroism (CD) spectra of glucagon. The similarity in the CD spectra of glucagon and insulin further suggests the presence of beta structure in glucagon, since X-ray analysis of insulin showed 24% beta sheet. In predicted form (b), both regions, residues 5-10 and residues 19-27, are beta sheets sheets (0% alpha, 52% beta) in agreement with the infrared spectral evidence that glucagon gels and fibrils have a predominant beta-sheet conformation. Since three reverse beta turns are predicted at residues 2-5, 10-13, and 15-18, glucagon may possess tertiary structure in agreement with viscosity and tritium-hydrogen exchange experiments. A proposal is offered concerning an induced alpha yields beta transition at residues 22-27 in glucagon during receptor site binding. Amino acid substitutions are proposed which should disrupt the beta sheets of glucagon with concomitant loss of biological activity. The experimental findings that glucagon aggregates to form dimers, trimers, and hexamers can be explained in terms of beta-sheet interactions as outlined in the present predictive model. Thus the conflicting conclusions of previous workers, concerning the conformation of glucagon in different environments, can be rationalized by the suggested conformational transition occurring within the molecule.

PubMed Disclaimer

Similar articles

Cited by

Publication types