Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2000:Suppl 35:115-22.

Mutant p53: "gain of function" through perturbation of nuclear structure and function?

Affiliations
  • PMID: 11389540
Review

Mutant p53: "gain of function" through perturbation of nuclear structure and function?

W Deppert et al. J Cell Biochem Suppl. 2000.

Abstract

Mutant p53 not simply is an inactivated tumor suppressor, as at least some mutant p53 proteins exhibit oncogenic properties. Mutant p53 thus is the most commonly expressed oncogene in human cancer. Accordingly, the expression of mutant p53 in tumors often correlates with bad prognosis, and expression of mutant p53 in p53-negative tumor cells enhances their transformed phenotype. The molecular basis for this "gain of function" is not yet understood. However, the finding that mutant p53 tightly associates with the nuclear matrix in vivo, and with high affinity binds to nuclear matrix attachment region (MAR) DNA in vitro, suggests that these activities are connected and may result in perturbation of nuclear structure and function in tumor cells. MAR-binding of mutant p53 most likely is due to conformation-selective DNA binding by mutant p53, i.e. the specific interaction of a given mutant p53 protein with regulatory or structural genomic DNA elements that are able to adopt specific non-B-DNA conformations. In support to this assumption, human mutant p53 (Gly(245)-->Ser) was shown to bind to repetitive DNA elements in vivo that might be part of MAR elements. This further supports a model according to which mutant p53, by interacting with key structural components of the nucleus, exerts its oncogenic activities through perturbation of nuclear structure and function. J. Cell. Biochem. Suppl. 35:115-122, 2000.

PubMed Disclaimer

Publication types

LinkOut - more resources