Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 1;498(1):72-5.
doi: 10.1016/s0014-5793(01)02497-8.

Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy

Affiliations
Free article

Mechanical unfolding of single filamin A (ABP-280) molecules detected by atomic force microscopy

S Furuike et al. FEBS Lett. .
Free article

Abstract

Filamin A (ABP-280), which is an actin-binding protein of 560 kDa as a dimer, can, together with actin filaments, produce an isotropic cross-linked three-dimensional network (actin/filamin A gel) that plays an important role in mechanical responses of cells in processes such as maintenance of membrane stability and translational locomotion. In this study, we investigated the mechanical properties of single filamin A molecules using atomic force microscopy. In force-extension curves, we observed sawtooth patterns corresponding to the unfolding of individual immunoglobulin (Ig)-fold domains of filamin A. At a pulling speed of 0.37 microm/s, the unfolding interval was sharply distributed around 30 nm, while the unfolding force ranged from 50 to 220 pN. This wide distribution of the unfolding force can be explained by variation in values of activation energy and the width of activation barrier of 24 Ig-fold domains of the filamin A at the unfolding transition. This unfolding can endow filamin A with great extensibility. The refolding of the unfolded chain of filamin A occurred when the force applied to the protein was reduced to near zero, indicating that its unfolding is reversible. Based on these results, we discuss here the physiological implications of the mechanical properties of single filamin A molecules.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources