Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001:70:209-46.
doi: 10.1146/annurev.biochem.70.1.209.

Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies

Affiliations
Review

Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies

J A Gerlt et al. Annu Rev Biochem. 2001.

Abstract

The protein sequence and structure databases are now sufficiently representative that strategies nature uses to evolve new catalytic functions can be identified. Groups of divergently related enzymes whose members catalyze different reactions but share a common partial reaction, intermediate, or transition state (mechanistically diverse superfamilies) have been discovered, including the enolase, amidohydrolase, thiyl radical, crotonase, vicinal-oxygen-chelate, and Fe-dependent oxidase superfamilies. Other groups of divergently related enzymes whose members catalyze different overall reactions that do not share a common mechanistic strategy (functionally distinct suprafamilies) have also been identified: (a) functionally distinct suprafamilies whose members catalyze successive transformations in the tryptophan and histidine biosynthetic pathways and (b) functionally distinct suprafamilies whose members catalyze different reactions in different metabolic pathways. An understanding of the structural bases for the catalytic diversity observed in super- and suprafamilies may provide the basis for discovering the functions of proteins and enzymes in new genomes as well as provide guidance for in vitro evolution/engineering of new enzymes.

PubMed Disclaimer

MeSH terms

LinkOut - more resources