Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Jan-Mar;18(1):97-103.
doi: 10.1080/09687680010030200.

Multidrug transporters in prokaryotic and eukaryotic cells: physiological functions and transport mechanisms

Affiliations
Free article
Review

Multidrug transporters in prokaryotic and eukaryotic cells: physiological functions and transport mechanisms

C G Blackmore et al. Mol Membr Biol. 2001 Jan-Mar.
Free article

Abstract

Multidrug transporters mediate the extrusion of structurally unrelated drugs from prokaryotic and eukaryotic cells. As a result of this efflux activity, the cytoplasmic drug concentration in the cell is lowered to subtoxic levels and, hence, cells become multidrug resistant. The activity of multidrug transporters interferes with the drug-based control of tumours and infectious pathogenic microorganisms. There is an urgent need to understand the structure-function relationships in multidrug transporters that underlie their drug specificity and transport mechanism. Knowledge about the architecture of drug and modulator binding sites and the link between energy-generating and drug translocating functions of multidrug transporters may allow one to rationally design new drugs that can poison or circumvent the activity of these transport proteins. Furthermore, if one is to inhibit multidrug transporters in human cells, one should know more about their physiological substrates and functions. This review will summarize important new insights into the role that multidrug transporters in general, and P-glycoprotein and its bacterial homologue LmrA in particular, play in the physiology of the cell. In addition, the molecular basis of drug transport by these proteins will be discussed.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources