Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 15;66(12):4311-5.
doi: 10.1021/jo015577t.

Synthesis of primary aromatic amides by aminocarbonylation of aryl halides using formamide as an ammonia synthon

Affiliations

Synthesis of primary aromatic amides by aminocarbonylation of aryl halides using formamide as an ammonia synthon

A Schnyder et al. J Org Chem. .

Abstract

Primary aromatic amides were prepared by a palladium-catalyzed aminocarbonylation reaction of aryl halides in high yields (70-90%) using formamide as the amine source. The reactions require a palladium catalyst in combination with a nucleophilic Lewis base such as imidazole or 4-(dimethylamino)pyridine (DMAP). Aryl, heteroaryl, and vinyl bromides and chlorides were converted to the primary amides under mild conditions (5 bar, 120 degrees C) using 1 mol % of a palladium-phosphine complex. Best results were obtained in dioxane using triphenylphosphine as the ligand and DMAP as the base. For activated aryl bromides, a phosphine-to-palladium ratio of 2:1 was sufficient, but less reactive aryl bromides or aryl chlorides required ligand-to-palladium ratios up to 8:1 in order to stabilize the catalyst and achieve full conversion. The influence of catalyst, base, solvent, pressure, and temperature was studied in detail. The mechanism of the reaction could be clarified by isolating and identifying the reaction intermediates. In addition, methylamides and dimethylamides were prepared by the same method using N-methylformamide and N,N-dimethylformamide as the amine source.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources