Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May;55(4):500-9.
doi: 10.1007/s002530000529.

Characterisation of the microbial 16S rDNA diversity of an aerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration

Affiliations

Characterisation of the microbial 16S rDNA diversity of an aerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration

P Dabert et al. Appl Microbiol Biotechnol. 2001 May.

Abstract

The microbial community of a conventional anaerobic-aerobic sequencing batch reactor was investigated by cloning and sequencing bacterial 16S rDNA. The 92 16S rDNA sequences analysed ranged across 50 different operational taxonomic units (OTU). The majority of these sequences were not closely related to known species. They belonged to 12 different groups, but essentially to the Cytophagales and the Proteobacteria beta, which represented 38% and 17% of the retrieved sequences respectively. No OTU numerically outnumbered the others. However, similarities were observed with previous reports on molecular characterisation of phosphorus-accumulating ecosystems, suggesting an enrichment in microorganisms belonging to the Rhodocyclus group. Thereafter, the ability of this anaerobic-aerobic microbial community to accumulate phosphorus with nitrate as its energy source was investigated. The reactor was shifted from anaerobic-aerobic running conditions to anaerobic-anoxic conditions by injection of nitrate; and its microbial community was monitored by PCR-single strand conformation polymorphism (SSCP). The reactor maintained a good phosphorus accumulation and similar SSCP microbial community patterns for a period of 17 days, suggesting that the same microbial community was able to respire both oxygen and nitrate. However, this situation was unstable, since a breakdown in phosphorus accumulation occurred thereafter.

PubMed Disclaimer

LinkOut - more resources