Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;163(7):1648-53.
doi: 10.1164/ajrccm.163.7.2006132.

Bleomycin-induced chronic lung damage does not resemble human idiopathic pulmonary fibrosis

Affiliations

Bleomycin-induced chronic lung damage does not resemble human idiopathic pulmonary fibrosis

G Borzone et al. Am J Respir Crit Care Med. 2001 Jun.

Abstract

Administration of bleomycin into the lungs of experimental animals has been utilized as a model to understand human pulmonary fibrosis. Most of the studies, however, have focused on early stages of the lung reaction. We hypothesized that chronic stages of the model may not mimic idiopathic pulmonary fibrosis, since in preliminary studies, lung volume and compliance were not decreased. Eight male Sprague-Dawley rats receiving intratracheal bleomycin (0.5 U/100 g body weight) underwent measurement of FRC, inspiratory capacity, and lung compliance 120 d later. Lung histologic changes were evaluated using light microscopy. Eight rats without intervention served as controls. Results show that our model, in early stages, has histologic changes no different from those previously described elsewhere. In chronic stages, however, the model does not behave as a restrictive syndrome: FRC is normal or increased, whereas lung compliance is normal. Focal peribronchiolar inflammation and fibrosis associated with paracicatricial emphysematous changes are the main histologic features of long-term lung remodeling after bleomycin. We conclude that while the chronic stages of the model may be informative in understanding mechanisms of fibrosis, care should be taken not to extrapolate to human idiopathic pulmonary fibrosis. We speculate that the model might resemble a particular subgroup of human interstitial lung disease, namely, those involving peribronchiolar structures.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources