Hyphae and yeasts of Candida albicans differentially regulate interleukin-12 production by human blood monocytes: inhibitory role of C. albicans germination
- PMID: 11402019
- PMCID: PMC98552
- DOI: 10.1128/IAI.69.7.4695-4697.2001
Hyphae and yeasts of Candida albicans differentially regulate interleukin-12 production by human blood monocytes: inhibitory role of C. albicans germination
Abstract
The role of Candida albicans yeast-to-hyphae transition in interleukin-12 (IL-12) production by monocytes was investigated. Germinating C. albicans not only failed to induce IL-12 p70 but also suppressed IL-12 production induced by heat-killed C. albicans. Comparison of the abilities of germinating C. albicans and agerminating mutants to inhibit IL-12 production showed that germination of C. albicans plays a critical role in the inhibition of IL-12 production.
Figures




Similar articles
-
Candida albicans and Candida krusei differentially induce human blood mononuclear cell interleukin-12 and gamma interferon production.Infect Immun. 2000 May;68(5):2464-9. doi: 10.1128/IAI.68.5.2464-2469.2000. Infect Immun. 2000. PMID: 10768932 Free PMC article.
-
Culture filtrates and whole heat-killed Candida albicans stimulate human monocytes to release interleukin-6.New Microbiol. 1993 Jul;16(3):267-74. New Microbiol. 1993. PMID: 8366822
-
Defective induction of interleukin-12 in human monocytes by germ-tube forms of Candida albicans.Infect Immun. 2000 Oct;68(10):5628-34. doi: 10.1128/IAI.68.10.5628-5634.2000. Infect Immun. 2000. PMID: 10992463 Free PMC article.
-
The classical CD14⁺⁺ CD16⁻ monocytes, but not the patrolling CD14⁺ CD16⁺ monocytes, promote Th17 responses to Candida albicans.Eur J Immunol. 2011 Oct;41(10):2915-24. doi: 10.1002/eji.201141418. Epub 2011 Aug 30. Eur J Immunol. 2011. PMID: 21695694
-
Production of interleukin-12.Res Immunol. 1995 Sep-Oct;146(7-8):432-8. doi: 10.1016/0923-2494(96)83012-4. Res Immunol. 1995. PMID: 8839142 Review. No abstract available.
Cited by
-
IL-12 and related cytokines: function and regulatory implications in Candida albicans infection.Clin Dev Immunol. 2011;2011:686597. doi: 10.1155/2011/686597. Epub 2010 Nov 1. Clin Dev Immunol. 2011. PMID: 21052539 Free PMC article. Review.
-
Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae.Infect Immun. 2005 Nov;73(11):7458-64. doi: 10.1128/IAI.73.11.7458-7464.2005. Infect Immun. 2005. PMID: 16239547 Free PMC article.
-
Inhibition of monocytic interleukin-12 production by Candida albicans via selective activation of ERK mitogen-activated protein kinase.Infect Immun. 2004 May;72(5):2513-20. doi: 10.1128/IAI.72.5.2513-2520.2004. Infect Immun. 2004. PMID: 15102758 Free PMC article.
-
Characterization and partial purification of Candida albicans Secretory IL-12 Inhibitory Factor.BMC Microbiol. 2008 Feb 19;8:31. doi: 10.1186/1471-2180-8-31. BMC Microbiol. 2008. PMID: 18282300 Free PMC article.
References
-
- Brown A J, Gow N A. Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol. 1999;7:333–338. - PubMed
-
- Forsyth C B, Plow E F, Zhang L. Interaction of the fungal pathogen Candida albicans with integrin CD11b/CD18: recognition by the I domain is modulated by the lectin-like domain and the CED18 subunit. J Immunol. 1998;161:6198–6205. - PubMed
-
- Kang K, Hammerberg C, Meunier L, Cooper K D. CD11b+ macrophages that infiltrate human epidermis after in vivo ultraviolet exposure potently produce IL-10 and represent the major secretory source of epidermal IL-10 protein. J Immunol. 1994;153:5256–5264. - PubMed
-
- Leidich S D, Ibrahim A S, Fu Y, Koul A, Jessup C, Vitullo J, Fonzi W, Mirbod F, Shigeru N, Nozawa Y, Ghannoum M A. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem. 1998;273:26078–26086. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources