Study of acute pharmacologic effects of prolactin on calcium and water transport in the rat colon by an in vivo perfusion technique
- PMID: 11405245
Study of acute pharmacologic effects of prolactin on calcium and water transport in the rat colon by an in vivo perfusion technique
Abstract
We investigated the acute effect of intraperitoneally administered prolactin on calcium and water transport in colon of sexually mature female Wistar rats using an in vivo perfusion technique. Test solution containing (in mM) NaCl, 100; KCl, 4.7; MgSO4, 1.2; CaCl2, 20; D-glucose, 11; sodium ferrocyanide (Na4Fe(CN)6), an index of net water transport, 20; and 0.7 (microCi 45CaCl2 (1 Ci = 37 GBq) was perfused througth the 8-cm colonic loop for 60 min at perfusion rates of 0.5 or 1.0 mL x min(-1). Calcium and water transport was also studied under a no flow condition to stimulate the condition often found in the colon by in vivo ligated colonic loop for 30 min. Control results showed no correlation between calcium transport and water flux. Flow of luminal solution at 0.5 and 1.0 mL x min(-1) was found to reverse net calcium absorption from 0.04+/-0.01 nmol x g(-1) dry weight x h(-1) to net calcium secretion of 0.04+/-0.04 and 0.9+/-0.02 nmol x g(-1) dry weight x h(-1), respectively. Neither 0.4, 0.6, nor 1.0 mg x kg(-1) prolactin had any effect on calcium fluxes in the colon. On the other hand, at a perfusion rate of 1 mL x min(-1), 0.4 mg x kg(-1) prolactin significantly decreased net water absorption from 3.86+/-0.90 to 0.88+/-0.64 mL x g(-1) dry weight x h(-1) (P < 0.001), and the higher doses of 0.6 and 1.0 mg x kg(-1) prolactin reversed net water absorption to net water secretion of 2.20+/-0.63 and 2.33+/-0.89 mL x g(-1) dry weight x h(-1), respectively (P < 0.001). The stimulatory effect of prolactin on water transport was completely abolished by reducing the perfusion rate from 1.0 mL x min(-1) to zero. The stimulatory effect of prolactin on water secretion at perfusion rate of 1.0 mL x min(-1) was also abolished when luminal [Na+] was reduced from 180 to 80 mM. We concluded that, unlike in the small intestine, calcium fluxes in the colon are not related to water transport and did not respond at all to prolactin. Water transport, on the other hand, was reversed from net absorption to secretion by prolactin. We propose that this prolactin-induced water secretion is probably mediated by recycling of luminal sodium in the vicinity of tight junctions.
Similar articles
-
Acute effects of prolactin on passive calcium absorption in the small intestine by in vivo perfusion technique.Can J Physiol Pharmacol. 1998 Feb;76(2):161-8. Can J Physiol Pharmacol. 1998. PMID: 9635155
-
Endogenous prolactin modulated the calcium absorption in the jejunum of suckling rats.Can J Physiol Pharmacol. 2005 Jul;83(7):595-604. doi: 10.1139/y05-045. Can J Physiol Pharmacol. 2005. PMID: 16091785
-
Serotonin-induced alteration of colonic electrolyte transport in the rat.Gastroenterology. 1984 Feb;86(2):310-7. Gastroenterology. 1984. PMID: 6690358
-
Prolactin is an important regulator of intestinal calcium transport.Can J Physiol Pharmacol. 2007 Jun;85(6):569-81. doi: 10.1139/y07-041. Can J Physiol Pharmacol. 2007. PMID: 17823618 Review.
-
Electrolyte transport in the mammalian colon: mechanisms and implications for disease.Physiol Rev. 2002 Jan;82(1):245-89. doi: 10.1152/physrev.00026.2001. Physiol Rev. 2002. PMID: 11773614 Review.
Cited by
-
Direct stimulation of the transcellular and paracellular calcium transport in the rat cecum by prolactin.Pflugers Arch. 2009 Sep;458(5):993-1005. doi: 10.1007/s00424-009-0679-6. Epub 2009 May 17. Pflugers Arch. 2009. PMID: 19449156
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous