Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 22;904(2):307-17.
doi: 10.1016/s0006-8993(01)02487-8.

ATP modulates Na+ channel gating and induces a non-selective cation current in a neuronal hippocampal cell line

Affiliations

ATP modulates Na+ channel gating and induces a non-selective cation current in a neuronal hippocampal cell line

Y El-Sherif et al. Brain Res. .

Abstract

Extracellular ATP evoked two excitatory responses in hippocampal neuroblastoma cells (HN2). The first, an opening of a receptor-operated non-selective cation channel and the second was a leftward shift in Na+ channel activation. Both ATP (5-1000 microM) and 2',3'-(4-benzoyl)-benzoyl-ATP (Bb-ATP, 50 microM) activated a non-selective cation current reversing near 0 mV and shifted the Na+ activation and inactivation curves to the left. Based on a comparison of a series of agonists and antagonists, the inward current appeared to be partially mediated by activation of a P2X7 receptor, although hybrid channels cannot be ruled out. The shift in Na+ channel gating could be separated from the opening of the cation channel, as application of the P2Y antagonist Reactive Blue-2 and GTP shifted the Na+ current activation to the left but failed to elicit the inward cation current. Both responses to ATP and Bb-ATP were insensitive to block by the P2X antagonist suramin (300 microM) but were prevented by incubation in oxidized ATP (200 microM); a putative P2X7 receptor antagonist. Prior screening of the surface negative charge of the membrane with a high concentration of divalent cations prevented both responses. We suggest that ATP4- activates a P2X receptor and becomes trapped on a site, on or near the Na+ channel. Activation of the P2X receptor leads to the opening of a non-specific cation channel, while the binding of ATP4- leads to a modified charge sensed by the Na+ channel, similar to what occurs in the presence of charged amphiphiles as well as a number of beta-scorpion toxins.

PubMed Disclaimer

Publication types

LinkOut - more resources