Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul;91(1):258-64.
doi: 10.1152/jappl.2001.91.1.258.

Regulation of skeletal muscle ATP catabolism by AMPD1 genotype during sprint exercise in asymptomatic subjects

Affiliations
Free article

Regulation of skeletal muscle ATP catabolism by AMPD1 genotype during sprint exercise in asymptomatic subjects

B Norman et al. J Appl Physiol (1985). 2001 Jul.
Free article

Abstract

Deficiency of myoadenylate deaminase, the muscle isoform of AMP deaminase encoded by the AMPD1 gene, is a common myopathic condition associated with alterations in skeletal muscle energy metabolism. However, recent studies have demonstrated that most individuals harboring this genetic abnormality are asymptomatic. Therefore, 18 healthy subjects with different AMPD1 genotypes were studied during a 30-s Wingate test in order to evaluate the influence of this inherited defect in AMPD1 expression on skeletal muscle energy metabolism and exercise performance in the asymptomatic population. Exercise performances were similar across the AMPD1 genotypes, whereas significant differences in several descriptors of energy metabolism were observed. Normal homozygotes (NN) exhibited the highest levels of AMP deaminase activities, net ATP catabolism, and IMP accumulation, whereas intermediate values were observed in heterozygotes (MN). Conversely, mutant homozygotes (MM) had very low AMP deaminase activities and showed no significant net catabolism of ATP or IMP accumulation. Accordingly, MM also did not show any postexercise increase in plasma ammonia. Unexpectedly, MN consistently exhibited greater increases in plasma ammonia compared with NN despite the relatively lower accumulation of IMP in skeletal muscle. Moreover, time course profiles of postexercise plasma ammonia and blood lactate accumulation also differed across AMPD1 genotypes. Finally, analysis of adenosine in leftover biopsy material revealed a modest twofold increase in MN and a dramatic 25-fold increase in MM.

PubMed Disclaimer

Publication types