Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Aug 17;276(33):30964-70.
doi: 10.1074/jbc.M103768200. Epub 2001 Jun 18.

Formation of highly reactive gamma-ketoaldehydes (neuroketals) as products of the neuroprostane pathway

Affiliations
Free article

Formation of highly reactive gamma-ketoaldehydes (neuroketals) as products of the neuroprostane pathway

N Bernoud-Hubac et al. J Biol Chem. .
Free article

Abstract

Neuroprostanes are prostaglandin-like compounds produced by free radical-induced peroxidation of docosahexaenoic acid, which is highly enriched in the brain. We previously described the formation of highly reactive gamma-ketoaldehydes (isoketals) as products of the isoprostane pathway of free radical-induced peroxidation of arachidonic acid. We therefore explored whether isoketal-like compounds (neuroketals) are also formed via the neuroprostane pathway. Utilizing mass spectrometric analyses, neuroketals were found to be formed in abundance in vitro during oxidation of docosahexaenoic acid and were formed in greater abundance than isoketals during co-oxidation of docosahexaenoic and arachidonic acid. Neuroketals were shown to rapidly adduct to lysine, forming lactam and Schiff base adducts. Neuroketal lysyl-lactam protein adducts were detected in nonoxidized rat brain synaptosomes at a level of 0.09 ng/mg of protein, which increased 19-fold following oxidation in vitro. Neuroketal lysyl-lactam protein adducts were also detected in vivo in normal human brain at a level of 9.9 +/- 3.7 ng/g of brain tissue. These studies identify a new class of highly reactive molecules that may participate in the formation of protein adducts and protein-protein cross-links in neurodegenerative diseases and contribute to the injurious effects of other oxidative pathologies in the brain.

PubMed Disclaimer

Publication types

LinkOut - more resources