Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Apr:180:123-35.
doi: 10.1034/j.1600-065x.2001.1800111.x.

Structural biology of the alternative pathway convertase

Affiliations
Review

Structural biology of the alternative pathway convertase

Y Xu et al. Immunol Rev. 2001 Apr.

Abstract

Complement convertases are bimolecular complexes expressing protease activity only against C3 and C5. Their action is necessary for production of the biological activities of the complement system. Formation of these complexes proceeds through sequential protein-protein interactions and proteolytic cleavages of high specificity. Recent structural, mutational and functional data on factors D and B have significantly enhanced our understanding of the assembly, action, and regulation of the alternative pathway convertase. These processes were shown to depend critically on conformational changes, only some of which are reversible. The need for such changes is dictated by the zymogen-like configurations of the active centers of these unique serine proteases. The structural determinants of some of these changes have been defined from structural and mutational analyses of the two enzymes. Transition of factor D from the zymogen-like to the catalytically active conformation is completely reversible, while the active conformation of the catalytic center of the Bb fragment of factor B is irreversibly attenuated to a great extent on dissociation of the convertase complex. Both mechanisms contribute to the regulation of the proteolytic activity of these enzymes. Additional studies are necessary for a complete description of the elegant mechanisms mediating these processes.

PubMed Disclaimer

MeSH terms

LinkOut - more resources