Fluid-attenuated inversion recovery intraarterial signal: an early sign of hyperacute cerebral ischemia
- PMID: 11415892
- PMCID: PMC7974782
Fluid-attenuated inversion recovery intraarterial signal: an early sign of hyperacute cerebral ischemia
Abstract
Background and purpose: Early detection of arterial occlusion and perfusion abnormality is necessary for effective therapy of hyperacute cerebral ischemia. We attempted to assess the utility of the fast fluid-attenuated inversion recovery (fast-FLAIR) sequence in detecting occluded arteries as high signal (referred to as intraarterial signal) and to establish the role of fast-FLAIR in detecting ischemic penumbra of hyperacute stroke within 24 hours after ictus.
Methods: We studied 60 patients with hyperacute cerebral ischemia caused by occlusion of intracranial major arteries. We compared intraarterial signal on FLAIR images with time of flight (TOF) on MR angiograms, flow voids on T2-weighted images, hyperintense lesions on diffusion-weighted images, and results of follow-up CT or MR scans.
Results: In 58 (96.7%) patients, FLAIR detected intraarterial signals as early as 35 minutes after stroke onset. In 48 (80.0%) patients, intraarterial signal on FLAIR images coincided with lack of TOF on MR angiograms. In 41 (74.5%) of 55 patients, the intraarterial signals of fast T2-weighted imaging depicted occlusion better than did deficient flow void on T2-weighted images. In 25 (41.7%) of 60 patients, the area of intraarterial signal distribution was larger than the hyperintense lesion measured on diffusion-weighted images. Areas of final infarction had sizes between those of intraarterial signal distribution on FLAIR images and lesions measured on diffusion-weighted images. In 35 (87.5%) of 40 patients, areas of intraarterial signal distribution were equal to regions of abnormal perfusion.
Conclusion: Intraarterial signal on FLAIR images is an early sign of occlusion of major arteries. FLAIR combined with diffusion-weighted imaging can be helpful to predict an area at risk for infarction (ischemic penumbra). FLAIR plays an important role for determining whether a patient should undergo perfusion study.
Figures
Comment in
-
Intraarterial signal on fluid-attenuated inversion recovery images: a measure of hemodynamic stress?AJNR Am J Neuroradiol. 2001 Jun-Jul;22(6):1015-6. AJNR Am J Neuroradiol. 2001. PMID: 11415889 Free PMC article. No abstract available.
References
-
- Gonzalez RG, Shaefer PW, Buonanno FS, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 1999;210:155-162 - PubMed
-
- Beauchamp Jr NJ, Barker PB, Wang PY, vanZijl PCM. Imaging of acute cerebral ischemia. Radiology 1999;212:307-324 - PubMed
-
- Sorenson AG, Buonanno FS, Gonzalez RG, et al. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 1996;199:391-401 - PubMed
-
- Baird AE, Benfield A, Schlaug G, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol 1997;41:581-589 - PubMed
-
- Noguchi K, Ogawa T, Inugami A, et al. MRI of acute cerebral infarction: a comparison of FLAIR and T2-weighted fast spin-echo imaging. Neuroradiology 1997;39:406-410 - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources