Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 27;271(2):261-71.
doi: 10.1016/s0378-1119(01)00508-x.

Cloning of a novel 2',5'-oligoadenylate synthetase-like molecule, Oasl5 in mice

Affiliations

Cloning of a novel 2',5'-oligoadenylate synthetase-like molecule, Oasl5 in mice

S Shibata et al. Gene. .

Abstract

The 2',5'-oligoadenylate synthetase (2-5OAS) is a enzyme that catalyzes synthesis of 2',5'-oligoadenylates (2-5A) in a dsRNA-dependent manner, and known as a major component of the IFN-induced host defense mechanisms against microbial infections. Here, we report the presence of a novel 2-5OAS-like molecule, termed Oasl5, in mice. The size of Oasl5 cDNA was about 2 kb and encoded a protein consisting of 362 aa. The amino acid sequence showed 76% similarity to the mouse 2-5OAS, however, several motifs being important for the enzyme activity were not conserved. The Oasl5 mRNA was most significantly expressed in the brain, and relatively weak expression was found in other organs such as the spleen, kidney, ovary and testis. It was also expressed in embryonic stem (ES) cells. The Oasl5 mRNA expression in ES cells was elevated 5-fold after treatment with IFN and about 2-fold in the brain when stimulated with IFN inducer, polyinosinic-polycytidylic acid (poly[I:C]). In situ hybridization analysis revealed that Oasl5 is expressed in neurons in the central nervous system in adult mice. When Oasl5 was expressed in E. coli, it yielded 42 kDa protein that binds to dsRNA, but it did not show oligoadenylate synthetase activity. These findings suggest a novel function of Oasl5, which are independent of oligoadenylate synthetase activity, in the brain and developing embryos.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources