Neuromodulation and the functional dynamics of piriform cortex
- PMID: 11418504
- DOI: 10.1093/chemse/26.5.585
Neuromodulation and the functional dynamics of piriform cortex
Abstract
Acetylcholine and norepinephrine have a number of effects at the cellular level in the piriform cortex. Acetylcholine causes a depolarization of the membrane potential of pyramidal cells and interneurons, and suppresses the action potential frequency accommodation of pyramidal cells. Acetylcholine also has strong effects on synaptic transmission, suppressing both excitatory and inhibitory synaptic transmission. At the same time as it suppresses synaptic transmission, acetylcholine enhances synaptic modification, as demonstrated by experiments showing enhancement of long-term potentiation. Norepinephrine has similar effects. In this review, we discuss some of these different cellular effects and provide functional proposals for these individual effects in the context of the putative associative memory function of this structure.
Similar articles
-
Modulation of associative memory function in a biophysical simulation of rat piriform cortex.J Neurophysiol. 1994 Aug;72(2):659-77. doi: 10.1152/jn.1994.72.2.659. J Neurophysiol. 1994. PMID: 7527075
-
Mechanisms underlying rule learning-induced enhancement of excitatory and inhibitory synaptic transmission.J Neurophysiol. 2012 Feb;107(4):1222-9. doi: 10.1152/jn.00356.2011. Epub 2011 Nov 30. J Neurophysiol. 2012. PMID: 22131370
-
Modulation of inhibitory synaptic potentials in the piriform cortex.J Neurophysiol. 1999 May;81(5):2103-18. doi: 10.1152/jn.1999.81.5.2103. J Neurophysiol. 1999. PMID: 10322052
-
Dynamics of learning-induced cellular modifications in the cortex.Biol Cybern. 2005 Jun;92(6):360-6. doi: 10.1007/s00422-005-0564-0. Epub 2005 May 18. Biol Cybern. 2005. PMID: 15906082 Review.
-
Neuromodulation and cortical function: modeling the physiological basis of behavior.Behav Brain Res. 1995 Feb;67(1):1-27. doi: 10.1016/0166-4328(94)00113-t. Behav Brain Res. 1995. PMID: 7748496 Review.
Cited by
-
Cortical Feedback Decorrelates Olfactory Bulb Output in Awake Mice.Neuron. 2015 Jun 17;86(6):1461-77. doi: 10.1016/j.neuron.2015.05.023. Epub 2015 Jun 4. Neuron. 2015. PMID: 26051422 Free PMC article.
-
Nucleus Basalis of Meynert Stimulation for Dementia: Theoretical and Technical Considerations.Front Neurosci. 2018 Sep 3;12:614. doi: 10.3389/fnins.2018.00614. eCollection 2018. Front Neurosci. 2018. PMID: 30233297 Free PMC article.
-
Modulation of olfactory-driven behavior by metabolic signals: role of the piriform cortex.Brain Struct Funct. 2019 Jan;224(1):315-336. doi: 10.1007/s00429-018-1776-0. Epub 2018 Oct 13. Brain Struct Funct. 2019. PMID: 30317390 Free PMC article.
-
Differential Impact of Severity and Duration of Status Epilepticus, Medical Countermeasures, and a Disease-Modifier, Saracatinib, on Brain Regions in the Rat Diisopropylfluorophosphate Model.Front Cell Neurosci. 2021 Oct 15;15:772868. doi: 10.3389/fncel.2021.772868. eCollection 2021. Front Cell Neurosci. 2021. PMID: 34720886 Free PMC article.
-
Odor-specific habituation arises from interaction of afferent synaptic adaptation and intrinsic synaptic potentiation in olfactory cortex.Learn Mem. 2009 Jun 24;16(7):452-9. doi: 10.1101/lm.1403509. Print 2009 Jul. Learn Mem. 2009. PMID: 19553383 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources