Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 22;88(12):1267-75.
doi: 10.1161/hh1201.092094.

Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells

Affiliations
Free article

Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells

M Akao et al. Circ Res. .
Free article

Abstract

Mitochondria can either enhance or suppress cell death. Cytochrome c release from mitochondria and depolarization of the mitochondrial membrane potential (DeltaPsi) are crucial events in triggering apoptosis. In contrast, activation of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels prevents lethal ischemic injury in vivo, implicating these channels as key players in the process of ischemic preconditioning. We probed the relationship between mitoK(ATP) channels and apoptosis in cultured neonatal rat cardiac ventricular myocytes. Incubation with 200 micromol/L hydrogen peroxide induced TUNEL positivity, cytochrome c translocation, caspase-3 activation, poly(ADP-ribose) polymerase cleavage, and dissipation of DeltaPsi. Pharmacological opening of mitoK(ATP) channels by diazoxide (100 micromol/L) preserved mitochondrial integrity and suppressed all markers of apoptosis. Diazoxide prevented DeltaPsi depolarization in a concentration-dependent manner (EC(50) approximately 40 micromol/L, with saturation by 100 micromol/L), as shown by both flow cytometry and quantitative image analysis of cells stained with fluorescent DeltaPsi indicators. These cytoprotective effects of diazoxide were reproduced by pinacidil, another mitoK(ATP) agonist, and blocked by the mitoK(ATP) channel antagonist 5-hydroxydecanoate (500 micromol/L). Our findings identify a novel mitochondrial pathway that is protective against apoptosis. The results also pinpoint mitoK(ATP) channels as logical therapeutic targets in diseases of enhanced apoptosis and oxidative stress.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources