Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May 15;181(2):77-89.
doi: 10.1007/pl00020977.

Modeling the current-voltage characteristics of charophyte membranes. II. The effect of salinity on membranes of Lamprothamnium papulosum

Affiliations

Modeling the current-voltage characteristics of charophyte membranes. II. The effect of salinity on membranes of Lamprothamnium papulosum

M J Beilby et al. J Membr Biol. .

Abstract

Lamprothamnium is a salt-tolerant charophyte that inhabits a broad range of saline environments. The electrical characteristics of Lamprothamnium cell membranes were modeled in environments of different salinity: full seawater (SW), 0.5 SW, 0.4 SW, and 0.2 SW. The cells were voltage-clamped to obtain the I/V (current-voltage) and G/V (conductance-voltage) profiles of the cell membranes. Cells growing at the different salinities exhibited one of three types of I/V profiles (states): pump-, background- and K(+)-states. This study concentrates on the pump- and background-states. Curved (pump-dominated) I/V characteristics were found in cells with resting membrane PDs (potential differences) of -219 +/- 12 mV (in 0.2 SW: 6 cells, 16 profiles), -161 +/- 12 mV (in 0.4 SW: 6 cells, 7 profiles), -151 +/- 12 mV (in 0.5 SW: 6 cells, 12 profiles) and -137 +/- 12 mV (in full SW: 8 cells, 13 profiles). The linear I/V characteristics of the background-state were found in cells with resting PDs of -107 +/- 12 mV (in 0.4 SW: 7 cells, 12 profiles), -108 +/- 12 mV (in 0.5 SW: 7 cells, 10 profiles) and -104 +/- 12 mV (in full SW: 3 cells, 5 profiles). The resting conductance (G) of the cells progressively increased with salinity, from 0.5 S x m(-2) (in 0.2 SW) to 22.0 S x m(-2) (in full SW). The pump peak conductance only rose from 2 S x m(-2) (0.2 SW) to 5 S x m(-2) (full SW), accounting for the increasingly depolarized resting PD observed in cells in more saline media. Upon exposure to hypertonic medium, both the pump and an inward K+ rectifier were stimulated. The modeling of the I/V profiles identified the inward K+ rectifier as an early electrical response to hypertonic challenge.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources