IP3-gated channels and their occurrence relative to CNG channels in the soma and dendritic knob of rat olfactory receptor neurons
- PMID: 11420596
IP3-gated channels and their occurrence relative to CNG channels in the soma and dendritic knob of rat olfactory receptor neurons
Abstract
Olfactory receptor neurons respond to odorants with G protein-mediated increases in the concentrations of cyclic adenosine 3',5'-monophosphate (cAMP) and/or inositol-1,4,5-trisphosphate (IP3). This study provides evidence that both second messengers can directly activate distinct ion channels in excised inside-out patches from the dendritic knob and soma membrane of rat olfactory receptor neurons (ORNs). The IP3-gated channels in the dendritic knob and soma membranes could be classified into two types, with conductances of 40 +/- 7 pS (n = 5) and 14 +/- 3 pS (n = 4), with the former having longer open dwell times. Estimated values of the densities of both channels from the same inside-out membrane patches were very much smaller for IP3-gated than for CNG channels. For example, in the dendritic knob membrane there were about 1000 CNG channels x microm(-2) compared to about 85 IP3-gated channels x microm(-2). Furthermore, only about 36% of the dendritic knob patches responded to IP3, whereas 83% of the same patches responded to cAMP. In the soma, both channel densities were lower, with the CNG channel density again being larger ( approximately 57 channels x microm(-2)) than that of the IP3-gated channels ( approximately 13 channels x microm(-2)), with again a much smaller fraction of patches responding to IP3 than to cAMP. These results were consistent with other evidence suggesting that the cAMP-pathway dominates the IP3 pathway in mammalian olfactory transduction.