Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;73(6):579-84.
doi: 10.1562/0031-8655(2001)073<0579:gaurcd>2.0.co;2.

Gamma and ultraviolet radiation cause DNA crosslinking in the presence of metal ions at high pH

Affiliations

Gamma and ultraviolet radiation cause DNA crosslinking in the presence of metal ions at high pH

S L Labiuk et al. Photochem Photobiol. 2001 Jun.

Abstract

M-DNA is a novel duplex conformation in which metal ions such as Co2+, Ni2+ or Zn2+ replace the imino protons of every base pair. An ethidium fluorescence assay was used to estimate lesions in M-DNA induced by gamma- and UV radiation. General damage to DNA was assessed from the loss of ethidium fluorescence after irradiation of calf thymus DNA. Crosslinks were measured from the return of ethidium fluorescence after a heating and cooling step. Strand breaks were estimated from the loss of fluorescence in covalently closed circular plasmid DNA after a heating and cooling step. For the Co2+ form of M-DNA, gamma-radiation caused the very efficient formation of crosslinks which was not observed with B-DNA nor with the Ni2+ or Zn2+ forms of M-DNA. The crosslinks occurred in both A-T and G-C base pairs but did not form in the presence of a free radical scavenger. Crosslinks induced by UV radiation also formed at a faster rate in the Co2+, Ni2+ and Zn2+ forms of M-DNA compared to B-DNA; crosslinking occurred in all DNA but was more prominent in AT-rich sequences and was not inhibited by a free radical scavenger. Therefore, the presence of certain metal ions may lead to large increases in the formation of radiation-induced crosslinks in DNA.

PubMed Disclaimer

Publication types

LinkOut - more resources