Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jul;93(1):204-9.
doi: 10.1097/00000539-200107000-00040.

Opioid-induced hyperalgesia and incisional pain

Affiliations

Opioid-induced hyperalgesia and incisional pain

X Li et al. Anesth Analg. 2001 Jul.

Abstract

Opioids occupy a position of unsurpassed clinical utility in the treatment of pain of many etiologies. However, recent reports in laboratory animals and humans have documented the occurrence of hyperalgesia when the administration of opioids is abruptly tapered or discontinued, a condition known as opioid-induced hyperalgesia (OIH). In these studies we documented that rats administered morphine (40 mg. kg(-1). day(-1) for 6 days) via subcutaneous osmotic minipumps demonstrated thermal hyperalgesia and mechanical allodynia for several days after the cessation of morphine administration. Additional experiments using a rat model of incisional pain showed that that attributable to OIH were additive with the hyperalgesia and allodynia that resulted from incision. In our final experiments we observed that if naloxone is administered chronically before incision then discontinued (20 mg. kg(-1). day(-1) for 6 days), the hyperalgesia and allodynia that result from hind paw incision was markedly reduced. In contrast, naloxone 1 mg/kg administered acutely after hind paw incision increased hyperalgesia and allodynia. We conclude that the chronic administration of exogenous opioid receptor agonists and antagonists before incision can alter the hyperalgesia and allodynia observed in this pain model, perhaps by altering intrinsic opioidergic systems involved in setting thermal and mechanical nociceptive thresholds.

Implications: The chronic administration of opioids followed by abrupt cessation can lead to a state of hyperalgesia. In these studies we demonstrate that the hyperalgesia from opioid cessation and from hind paw incision are additive in rats. We suggest that failure to take into consideration preoperative opioid use can lead to excessive postoperative pain.

PubMed Disclaimer