Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 May-Aug;32(3-4):261-73.
doi: 10.1051/vetres:2001123.

Resistance to trimethoprim and sulfonamides

Affiliations
Free article
Review

Resistance to trimethoprim and sulfonamides

O Sköld. Vet Res. 2001 May-Aug.
Free article

Abstract

Sulfonamides and trimethoprim have been used for many decades as efficient and inexpensive antibacterial agents for animals and man. Resistance to both has, however, spread extensively and rapidly. This is mainly due to the horizontal spread of resistance genes, expressing drug-insensitive variants of the target enzymes dihydropteroate synthase and dihydrofolate reductase, for sulfonamide and trimethoprim, respectively. Two genes, sul1 and sul2, mediated by transposons and plasmids, and expressing dihydropteroate synthases highly resistant to sulfonamide, have been found. For trimethoprim, almost twenty phylogenetically different resistance genes, expressing druginsensitive dihydrofolate reductases have been characterized. They are efficiently spread as cassettes in integrons, and on transposons and plasmids. One particular gene, dfr9, seems to have originally been selected in the intestine of swine, where it was found in Escherichia coli, on large plasmids in a disabled transposon, Tn5393, originally found in the plant pathogen Erwinia amylovora. There are also many examples of chromosomal resistance to sulfonamides and trimethoprim, with different degrees of complexity, from simple base changes in the target genes to transformational and recombinational exchanges of whole genes or parts of genes, forming mosaic gene patterns. Furthermore, the trade-off, seen in laboratory experiments selecting resistance mutants, showing drug-resistant but also less efficient (increased Kms) target enzymes, seems to be adjusted for by compensatory mutations in clinically isolated drug-resistant pathogens. This means that susceptibility will not return after suspending the use of sulfonamide and trimethoprim.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources