Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 May;52(358):891-9.
doi: 10.1093/jexbot/52.358.891.

The pathways of calcium movement to the xylem

Affiliations

The pathways of calcium movement to the xylem

P J White. J Exp Bot. 2001 May.

Abstract

Calcium is an essential plant nutrient. It is acquired from the soil solution by the root system and translocated to the shoot via the xylem. The root must balance the delivery of calcium to the xylem with the need for individual root cells to use [Ca2+]cyt for intracellular signalling. Here the evidence for the current hypothesis, that Ca2+ travels apoplastically across the root to the Casparian band which it then circumvents via the cytoplasm of the endodermal cell, is critically reviewed. It is noted that, although Ca2+ channels and Ca2+-ATPases are present and could catalyse Ca2+ influx and efflux across the plasma membrane of endodermal cells, their transport capacity is unlikely to be sufficient for xylem loading. Furthermore, there seems to be no competition, or interactions, between Ca2+, Ba2+ and Sr2+ for transport to the shoot. This seems incompatible with a symplastic pathway involving at least two protein-catalysed transport steps. Thus, a quantity of purely apoplastic Ca2+ transport to the xylem is indicated. The relative contributions of these two pathways to the delivery of Ca2+ to the xylem are unknown. However, the functional separation of symplastic Ca2+ fluxes (for root nutrition and cell signalling) and apoplastic Ca2+ fluxes (for transfer to the shoot) would enable the root to fulfil the demand of the shoot for calcium without compromising intracellular [Ca2+]cyt signals. This is also compatible with the observed correlation between transpiration rate and calcium delivery to the shoot.

PubMed Disclaimer

Publication types

LinkOut - more resources