Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules
- PMID: 11433273
- DOI: 10.1038/90228
Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules
Abstract
Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots (zinc sulfide-capped cadmium selenide nanocrystals) into polymeric microbeads at precisely controlled ratios. Their novel optical properties (e.g., size-tunable emission and simultaneous excitation) render these highly luminescent quantum dots (QDs) ideal fluorophores for wavelength-and-intensity multiplexing. The use of 10 intensity levels and 6 colors could theoretically code one million nucleic acid or protein sequences. Imaging and spectroscopic measurements indicate that the QD-tagged beads are highly uniform and reproducible, yielding bead identification accuracies as high as 99.99% under favorable conditions. DNA hybridization studies demonstrate that the coding and target signals can be simultaneously read at the single-bead level. This spectral coding technology is expected to open new opportunities in gene expression studies, high-throughput screening, and medical diagnostics.
Comment in
-
Bar-coding biomolecules with fluorescent nanocrystals.Nat Biotechnol. 2001 Jul;19(7):621-2. doi: 10.1038/90213. Nat Biotechnol. 2001. PMID: 11433268 No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
