Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Sep;37(6):477-92.
doi: 10.1016/s1368-8375(01)00003-3.

Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives

Affiliations
Review

Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives

J H Jeng et al. Oral Oncol. 2001 Sep.

Abstract

Betel quid (BQ)-chewing is a popular oral habit with potential links to the occurrence of oral cancer. Many of the literature-based studies reveal that areca nut (AN) extract may demonstrate mutagenic and genotoxic effects, in addition to inducing preneoplastic as well as neoplastic lesions in experimental animals. Areca nut should, thus, be highly suspected as a human carcinogen. Toxicity studies relating to AN-contained polyphenols and tannins are not conclusive, with both carcinogenic and anti-carcinogenic effects being reported. The mutagenicity and genotoxicity of areca alkaloids has been detected by many short-term assays. However, their genotoxicity to oral fibroblasts and keratinocytes, the target cells of BQ, has not been identified. It would thus appear that AN toxicity is not completely due to its polyphenol, tannin and alkaloid content. The single agent which is responsible for AN carcinogenicity awaits further clarification. Reactive oxygen species produced during auto-oxidation of AN polyphenols in the BQ-chewer's saliva, are crucial in the initiation and promotion of oral cancer. Nitrosation of areca alkaloids also produces AN-specific nitrosamines, that have been demonstrated to be mutagenic, genotoxic and are capable of inducing tumors in experimental animals. Arecaidine and AN extract are further suggested to be tumor promoters. Antioxidants such as glutathione and N-acetyl-L-cysteine can potentially prevent such AN-elicited cytotoxicity. Further studies are needed to delineate the metabolism of AN ingredient and their roles in the multi-step chemical carcinogenesis, in order to enhance the success of the future chemoprevention of oral cancer and oral submucous fibrosis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources