Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Feb;57(2):98-105.
doi: 10.1159/000047229.

Species differences and similarities in the fine structure of the mammalian corpus callosum

Affiliations

Species differences and similarities in the fine structure of the mammalian corpus callosum

R Olivares et al. Brain Behav Evol. 2001 Feb.

Abstract

A cross-species ultrastructural study of the corpus callosum was performed in six domestic species: the rat, the rabbit, the cat, the dog, the horse and the cow. The results indicate cross-species conservatism in callosal fiber composition with a good interspecies relation between fiber number and brain size. Across species, increases in both brain size and callosal area indicate more callosal fibers, although less than expected from the estimated increase in cortical cell number. Within each species, the correlation between fiber number and brain weight tends to disappear, although in most cases a larger callosum implies a larger number of callosal fibers. The median fiber diameter was conservative across species (0.11-0.2 microm), indicating the maintenance of conduction velocity of most callosal fibers regardless of interhemispheric distance. Nevertheless, the maximal fiber diameters tended to be higher in species with larger brains. Therefore, there is a population of coarse-diameter fibers that tend to increase their diameter and conduction velocity with increasing brain size. However, allometric calculations suggest that the associated increase in velocity in these large fibers may not be sufficient to maintain a constant interhemispheric transmission time in different species.

PubMed Disclaimer

Publication types

LinkOut - more resources