Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun 15;276(24):10977-83.

Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily

Affiliations
  • PMID: 11439930
Free article

Conversion of the ion selectivity of the 5-HT(3a) receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily

M J Gunthorpe et al. J Biol Chem. .
Free article

Abstract

The 5-hydroxytryptamine(3) (5-HT(3)) receptor is a member of a superfamily of ligand-gated ion channels, which includes nicotinic acetylcholine, gamma-aminobutyric acid, and glycine receptors. The receptors are either cation or anion selective, leading to their distinctive involvement in either excitatory or inhibitory neurotransmission. Using a combination of site-directed mutagenesis and electrophysiological characterization of homomeric 5-HT(3A) receptors expressed in HEK293 cells, we have identified a set of mutations that convert the ion selectivity of the 5-HT(3A) receptor from cationic to anionic; these were substitution of V13'T in M2 together with neutralization of glutamate residues (E-1'A) and the adjacent insertion of a proline residue (P-1') in the M1-M2 loop. Mutant receptors showed significant chloride permeability (P(Cl)/P(Na) = 12.3, P(Na)/P(Cl) = 0.08), whereas WT receptors are predominantly permeable to sodium (P(Na)/P(Cl) > 20, P(Cl)/P(Na) < 0.05). Since the equivalent mutations have previously been shown to convert alpha7 nicotinic acetylcholine receptors from cationic to anionic (Galzi J.-L., Devillers-Thiery, A, Hussy, N., Bertrand, S. Changeux, J. P., and Bertrand, D. (1992) Nature 359, 500-505) and, recently, the converse mutations have allowed the construction of a cation selective glycine receptor (Keramidas, A., Moorhouse, A. J., French, C. R., Schofield, P. R., and Barry, P. H. (2000) Biophys. J. 78, 247-259), it appears that the determinants of ion selectivity represent a conserved feature of the ligand-gated ion channel superfamily.

PubMed Disclaimer

Corrected and republished from

Publication types

MeSH terms

LinkOut - more resources