Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Jun;204(Pt 12):2145-54.
doi: 10.1242/jeb.204.12.2145.

Ammonia detoxification and localization of urea cycle enzyme activity in embryos of the rainbow trout (Oncorhynchus mykiss) in relation to early tolerance to high environmental ammonia levels

Affiliations

Ammonia detoxification and localization of urea cycle enzyme activity in embryos of the rainbow trout (Oncorhynchus mykiss) in relation to early tolerance to high environmental ammonia levels

S L Steele et al. J Exp Biol. 2001 Jun.

Abstract

The present study investigated the role of ammonia as a trigger for hatching, mechanisms of ammonia detoxification and the localization of urea cycle enzymes in the early life stages of freshwater rainbow trout (Oncorhynchus mykiss). The key urea cycle enzyme carbamoyl phosphate synthetase III was found exclusively in the embryonic body (non-hepatic tissues); related enzymes were distributed between the liver and embryonic body. 'Eyed-up' trout embryos were exposed either acutely (2h) to 10 mmol l(-1) NH(4)Cl or chronically (4 days) to 0.2 mmol l(-1) NH(4)Cl. Time to hatching was not affected by either acute or chronic NH(4)Cl exposure. Urea levels, but not ammonia levels in the embryonic tissues, were significantly higher than in controls after both acute and chronic NH(4)Cl exposure, whereas there were no significant changes in urea cycle enzyme activities. Total amino acid levels in the embryonic tissues were unaltered by chronic ammonia exposure, but levels of most individual amino acids and total amino acid levels in the yolk were significantly lower (by 34-58%) than in non-exposed controls. The data indicate that trout embryos have an efficient system to prevent ammonia accumulation in embryonic tissue, by conversion of ammonia to urea in embryonic tissues and through elevation of ammonia levels in the yolk.

PubMed Disclaimer

Publication types

LinkOut - more resources